Home » Educational » Robot control part 2: Jacobians, velocity, and force

Robot control part 2: Jacobians, velocity, and force

studywolf

Jacobian matrices are a super useful tool, and heavily used throughout robotics and control theory. Basically, a Jacobian defines the dynamic relationship between two different representations of a system. For example, if we have a 2-link robotic arm, there are two obvious ways to describe its current position: 1) the end-effector position and orientation (which we will denote $latex \textbf{x}$), and 2) as the set of joint angles (which we will denote $latex \textbf{q}$). The Jacobian for this system relates how movement of the elements of $latex \textbf{q}$ causes movement of the elements of $latex \textbf{x}$. You can think of a Jacobian as a transform matrix for velocity.

Formally, a Jacobian is a set of partial differential equations:

$latex \textbf{J} = \frac{\partial \textbf{x}}{\partial \textbf{q}}$.

With a bit of manipulation we can get a neat result:

$latex \textbf{J} = \frac{\partial \textbf{x}}{\partial t} \; \frac{\partial t}{\partial \textbf{q}} \rightarrow \frac{\partial \textbf{x}}{\partial \textbf{t}} =…

View original post 2,647 more words

Advertisements

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s

Partners

%d bloggers like this: